martes, 8 de noviembre de 2011

FUNCIONAMIENTO DEL OJO HUMANO 
Debido a que es un órgano notablemente adaptativo, el ojo humano es capaz de ver montañas distantes o distinguir un diminuto grano de arena. El ojo detecta un amplio rango de colores a la luz del día y, cuando el sol se pone puede brindarnos un panorama en blanco y negro del mundo que nos rodea. Los rayos de luz que inciden a través del cristalino alcanzan la retina que se encuentra en la parte posterior del ojo.

Allí estos rayos se convierten en impulsos que viajan a través del nervio óptico hacia la corteza del cerebro relacionada con la visión y que crea las imágenes que vemos.
Debido a que cada uno de nuestros ojos tiene una visión levemente diferente de un objeto, el cerebro fusiona las imágenes para crear un efecto tridimensional (Estereoscópico) y de esta manera nos permite percibir la profundidad y la distancia.

GLOBO OCULAR: El globo ocular es una estructura esférica de aproximadamente 2,5 cm de diámetro con un marcado abombamiento sobre su superficie anterior. La parte exterior, o la cubierta, se compone de tres capas de tejido: la capa más externa o esclerótica tiene una función protectora, cubre unos cinco sextos de la superficie ocular y se prolonga en la parte anterior con la córnea transparente; la capa media o úvea tiene a su vez tres partes diferenciadas: la coroides -muy vascularizada, reviste las tres quintas partes posteriores del globo ocular- continúa con el cuerpo ciliar, formado por los procesos ciliares, y a continuación el iris, que se extiende por la parte frontal del ojo. La capa más interna es la retina, sensible a la luz.

CORNEA: 
En el frente del globo ocular se encuentra una membrana transparente, como el vidrio de un reloj, denominada córnea. La córnea es una membrana resistente, compuesta por cinco capas, a través de la cual la luz penetra en el interior del ojo. Por detrás, hay una cámara llena de un fluido claro y húmedo (el humor acuoso) que separa la córnea de la lente del cristalino. En sí misma, la lente es una esfera aplanada constituida por un gran número de fibras transparentes dispuestas en capas. Está conectada con el músculo ciliar, que tiene forma de anillo y la rodea mediante unos ligamentos. El músculo ciliar y los tejidos circundantes forman el cuerpo ciliar y esta estructura aplana o redondea la lente, cambiando su longitud focal.

IRIS: Detrás de la córnea se encuentra el iris: la porción circular del tejido pigmentado que le da su color al ojo, esta estructura pigmentada suspendida entre la córnea y el cristalino, tiene una abertura circular en el centro, la pupila. El tamaño de la pupila depende de un músculo que rodea sus bordes, aumentando o disminuyendo cuando se contrae o se relaja, controlando la cantidad de luz que entra en el ojo. Por detrás de la lente, el cuerpo principal del ojo está lleno de una sustancia transparente y gelatinosa (el humor vítreo) encerrado en un saco delgado que recibe el nombre de membrana hialoidea. La presión del humor vítreo mantiene distendido el globo ocular.

ESCLEROTICA:
 La esclerótica (o blanco del ojo) es la capa externa fibrosa y de color blanco que recubre al globo ocular. Su función es la de proteger las estructuras sensitivas del ojo.

COROIDES: 
La coroides es la capa de vasos sanguíneos y se encuentra detrás de la retina a la que le proporciona oxígeno y otros nutrientes.
RETINA: 
La retina es la túnica delgada de múltiples capas que se encuentra en la parte posterior del ojo y funciona como una pantalla sobre la cual la córnea y el cristalino proyectan imágenes. (Cuando una persona tiene un desprendimiento de retina, la superficie interna sensible a la luz se ha separado de las capas externas) La mácula, en el centro de la retina, es la región que distingue el detalle en el centro del campo visual. Dos tipos de receptores visuales hay en la retina, los conos y los bastones, traducen las imágenes en impulsos nerviosos que se envían al cerebro. Los conos requieren una luz relativamente brillante para su funcionamiento, pero pueden detectar muchos tonos y matices de color. Por el contrario, los bastones requieren muy poca luz, lo que los hace muy adecuados para la visión nocturna; sin embargo, no pueden discernir los colores.
La retina es una capa compleja compuesta sobre todo por células nerviosas. Las células receptoras sensibles a la luz se encuentran en su superficie exterior detrás de una capa de tejido pigmentado. Estas células tienen la forma de conos y bastones y están ordenadas como los fósforos de una caja. Situada detrás de la pupila, la retina tiene una pequeña mancha de color amarillo, llamada mácula lútea; en su centro se encuentra la fóvea central, la zona del ojo con mayor agudeza visual. La capa sensorial de la fóvea se compone sólo de células con forma de conos, mientras que en torno a ella también se encuentran células con forma de bastones. Según nos alejamos del área sensible, las células con forma de cono se vuelven más escasas y en los bordes exteriores de la retina sólo existen las células con forma de bastones.

CONJUNTIVA: 
Esta membrana flexible y transparente forma un sello sobre el blanco del ojo y continúa hasta la superficie del párpado. Dentro de la conjuntiva se encuentran diminutas glándulas que producen lágrimas y mucosidad que ayudan a lubricar el ojo.

CRISTALINO
El cristalino se encuentra precisamente detrás del iris, y su función es lograr el enfoque preciso, proceso que se conoce como acomodación. La forma del cristalino es alterada por pequeños músculos ciliares que lo hacen más curvo para poder enfocar los objetos cercanos y lo achatan para poder enfocar los objetos distantes. La formación de cataratas hace que el cristalino se vuelva opaco, determinando así una visión borrosa y la disminución de la percepción del color.

CUERPO VITREO
El cuerpo vítreo es la masa transparente que ocupa el espacio entre el cristalino y la retina. Está compuesto por una sustancia gelatinosa que mantiene la forma del globo del ojo.
El nervio óptico entra en el globo ocular por debajo y algo inclinado hacia el lado interno de la fóvea central, originando en la retina una pequeña mancha redondeada llamada disco óptico. Esta estructura forma el punto ciego del ojo, ya que carece de células sensibles a la luz.

Sentido de la vista

FUNCIONAMIENTO DE LA MAQUINA FOTOGRAFICA

En esencia, la cámara es un cajón oscuro con un agujero por el que entra la luz reflejada por el objeto que fotografiamos para plasmarse sobre un negativo produciendo un proceso químico casi instantáneo. Los haluros de plata del negativo reaccionan a la luz formando diminutos puntitos. Las zonas que reciben más luz aparecen más oscuras pues se ha formado un mayor número de cristales, mientras que las más blancas son las menos impresionadas.

Este proceso da como resultado una imagen negativa, es decir, con los colores invertidos. Debe ser positivada mediante el revelado para obtener la copia final con los colores originales.

Las cámaras tienen tres mecanismos de control básicos para regular este proceso y obtener una foto nítida y correctamente expuesta:
Partes de una cámara fotográfica


1.- El anillo de enfoque: Está situado en el objetivo. Al girarlo modificamos la distancia entre la lente y el plano de la película. De esta forma logramos poner a foco el objeto fotografiado, que de otra manera podría salir desenfocado al formarse su imagen en un plano anterior o posterior al de la película. 

2.- El diafragma: Es el agujero por el cual entra la luz. En las cámaras réflex es un anillo formado por unas laminillas metálicas que permiten variar el diámetro de la abertura y regular de esta manera la cantidad de luz que entra. Se maneja girando otro anillo situado en el objetivo. 

3.- El obturador: Cuando pulsamos el botón de disparo estamos accionando el obturador. Suelen ser dos cortinillas situadas delante del negativo que se abren y se cierran durante unas fracciones de segundo. El obturador controla el tiempo durante el cual se impresionará la película. 

funcionamiento de la camara

FUNCIONAMIENTO DEL TELESCOSPIO
Todos sabemos que el telescopio es un instrumento que permite la observación de las estrellas, la Luna y otros astros, es decir, de objetos muy lejanos.
Pero, ¿cómo es capaz de aumentar tanto los objetos?, y ¿quién fue el inventor? Para que aprendamos más de este objeto tan fascinante, intentaré responder a estas preguntas.


Primero, un poco de historia
Se dice que el telescopio fue inventado por Hans Lippershey en Holanda, a principios del siglo XVII; parece ser que un par de niños, tal vez sus hijos, jugaban con las lentes de su taller cuando notaron que, con cierta combinación de ellas, los objetos lejanos se amplificaban. Lippershey observó ese fenómeno y ofreció el invento en secreto a la corona de su país.
Sin embargo, en las demostraciones que siguieron, se hallaba un amigo de Galileo Galilei quien, a su regreso a Italia, le comunicó con gran entusiasmo lo que había visto en ellas; esto sucedió en noviembre de 1609 y Galileo, sin perder un momento y habiendo imaginado cómo se podría lograr tal efecto, comenzó a experimentar con las lentes de un amigo suyo, fabricante de anteojos. Así logró, en pocos días, reproducir el fenómeno de la amplificación de objetos lejanos, pensando de inmediato en su aplicación al estudio del firmamento.
Para montar las lentes de su primer instrumento, Galileo empleó un viejo tubo de órgano, y la noche del 6 de enero de 1610 estrenó su telescopio al apuntarlo a la Luna, las estrellas y el planeta Júpiter, que podía verse al anochecer. Nacía así la astronomía moderna.
Su descubrimiento más importante fue el de los satélites de Júpiter, cuya observación durante varios días ratificó la teoría heliocéntrica de Copérnico
Posteriormente, Johannes Kepler mejoró el instrumento de Galileo aumentando considerablemente el campo del telescopio, aunque invertía la imagen aumentada, ypero al hacerlo, se producía más aberración óptica que con el de Galileo, es decir, la imagen se veía distorsionada.
Años después, Isaac Newton, que creía que la aberración esférica no se podría corregir nunca, ideó otro tipo de telescopio, el reflector, a base de espejos. El razonamiento de Newton era simple y brillante: si la luz no atravesaba ninguna lente, la aberración esférica dejaría de ser un problema.

¿Cuáles son los componentes del telescopio?
Lente:
 pieza de vidrio trabajada de forma concreta que permite la obtención de imágenes por efecto de los fenómenos de refracción.
Espejo: superficie límite de un medio en la que se produce la reflexión de la luz.
Foco (f): punto en el que los rayos de luz convergen al refractarse en una lente o reflejarse en un espejo. El foco de toda lente o espejo se sitúa en algún punto de la recta de su eje.
Distancia focal (F): la distancia que media entre el centro del objetivo (lente o espejo) y el punto donde los rayos de luz convergen, es decir, el foco. Esta distancia depende de la curvatura de las lentes o espejos
Objetivo: elemento de un instrumento óptico dispuesto en dirección al objeto que se quiere observar. Los objetivos de los instrumentos ópticos son lentes o espejos y sobre ellos incide la luz proveniente de los objetos observados, refractándose en el caso de las lentes o reflejándose en el caso de los espejos.

Ocular: lente o sistema de lentes de un instrumento óptico y que constituye la parte donde aplica el ojo el observador. El ocular se sitúa en el foco del objetivo del instrumento y facilita y aumenta la imagen proporcionada por éste. Aparte del empleo de uno u otro tipo de lentes la característica que más diferencia a los oculares es su distancia focal que es la que, en última instancia, proporciona los aumentos.

¿Qué tipos de telescopio hay?
Existen tres tipos de telescopios: los refractores cuya óptica está basada en el empleo de lentes, los reflectores basados en espejos y los telescopios catadióptricos, que combinan las cualidades de las lentes y los espejos..
1.Telescopios refractores
En su esquema básico el objetivo de un telescopio refractor está formado por una lente objetivo colocada en un extremo del tubo que proyecta la luz hacia el fondo, donde se colocará el ocular a través del cual se observa. No obstante, actualmente casi todos los telescopios refractores utilizan como objetivo un conjunto de dos o más lentes que se complementan oportunamente para reducir o eliminar la aberración cromática y la esfericidad que se produce con este tipo de ópticas. Si la calidad de las lentes es alta estos telescopios ofrecen una gran definición y contraste, haciéndose especialmente aptos para la observación de astros brillantes al tiempo que permiten obtener aumentos relativamente elevados con oculares de focal larga. 
2. Telescopios reflectores
Los telescopios reflectores utilizan como objetivo un espejo llamado primario (generalmente parabólico) colocado al final del tubo óptico que proyecta la imagen hacia un espejo secundario que la envía a su vez hacia el ocular. Al intervenir más elementos es necesario que todos estén bien alineados, a lo cual se le llama colimación. Puesto que la fabricación de espejos de gran diámetro es relativamente sencilla y barata se pueden obtener instrumentos de tamaño medio a precios muy ajustados.
Son telescopios muy luminosos y de elevado poder resolutivo que los hace aptos para un gran número de prácticas de observación. Además, los de tamaño pequeño y medio son fáciles de montar y desmontar lo que facilita su transporte a zonas alejadas de los núcleos de población.

3.Telescopios catadióptricos
Veamos ahora los catadióptricos, inventados recientemente. Resultan instrumentos de gran potencia y de tamaño bastante pequeño.
Este sistema fue inventado en la década del 30 por Bernard Schmidt, quien trabajaba tallando lentes y espejos. Posteriormente el diseño se adaptó a telescopios, proporcionando gran nitidez y apertura a las observaciones. Estos aparatos son muy costosos.

¿Y, cómo funciona el telescopio?
En una lente la luz desvía su trayectoria al pasar a través de ella. Es el fenómeno de refracción, que se produce siempre que la luz pasa de uno a otro medio. En los espejos la luz también cambia de dirección pero, esta vez, reflejándose según un determinado ángulo. Este es el fenómeno de reflexión.

Siguiendo la Figura , a la distancia entre el centro de la lente objetivo (punto O) y su foco (punto F1') se le llama longitud focal, que es precisamente la que correspondería a un telescopio sobre el cual estuviera montada. Se representa por la letra F y su valor suele venir expresado en milímetros.
El ocular se coloca entonces de manera que su foco (punto F2) coincida con la imagen formada por el objetivo. En esta situación el observador recibe una imagen virtual e invertida de igual tamaño que la formada por el objetivo pero, al originarse un gran aumento angular, se ve con mayor detalle.
Ahora bien, si simplemente sutituímos la lente objetivo de la Figura por otra con una distancia focal mayor comprobaremos como la imagen real que se forma es de mayor tamaño que en el primer caso. El ocular sigue cumpliendo exactamente la misma función que antes, pero la imagen que percibirá el observador es más grande.

TELESCOPIOS: Funcionamiento

ESPECTRO DE COLORES 
Los colores del arco iris en el espectro visible incluye todos esos colores que pueden ser producidos por la luz visible de una simple longitud de onda, los colores del espectro puro o monocromáticos.
A pesar que el espectro es continuo y por lo tanto no hay cantidades vacías entre uno y otro color, los rangos anteriores podrían ser usados como una aproximación.
Spectrum.svg
violeta380–450 nm
azul450–495 nm
verde495–570 nm
amarillo570–590 nm
anaranjado590–620 nm
rojo620–750 nm
El color es una percepción visual que se genera en el cerebro al interpretar las señales nerviosas que le envían los foto receptores de la retina del ojo y que a su vez interpretan y distinguen las distintas longitudes de onda que captan de la parte visible del espectro electromagnético.
Es un fenómeno físico-químico asociado a las innumerables combinaciones de la luz, relacionado con las diferentes longitudes de ondaen la zona visible del espectro electromagnético, que perciben los humanos y otros animales a través de los órganos de la visión, como una sensación que nos permite diferenciar los objetos con mayor precisión.
Todo cuerpo iluminado absorbe una parte de las ondas electromagnéticas y refleja las restantes. Las ondas reflejadas son captadas por el ojo e interpretadas en el cerebro como colores según las longitudes de ondas correspondientes. El ojo humano sólo percibe las longitudes de onda cuando la iluminación es abundante. A diferentes longitudes de onda captadas en el ojo corresponden distintos colores en el cerebro.
Con poca luz se ve en blanco y negro. En la denominada síntesis aditiva (comúnmente llamada "superposición de colores luz") el color blanco resulta de la superposición de todos los colores, mientras que el negro es la ausencia de color. En la síntesis sustractiva (mezcla de pinturas, tintes, tintas y colorantes naturales para crear colores) el blanco solo se da bajo la ausencia de pigmentos y utilizando un soporte de ese color y el negro es resultado de la superposición de los colores cian, magenta y amarillo.
La luz blanca puede ser descompuesta en todos los colores (espectro) por medio de un prisma. En la naturaleza esta descomposición da lugar al arco iris.